Интерлейкин 4 при бронхиальной астме
Th2 cytokines and asthma — Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists
Источник: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC59570/
Интерлейкин-4 (IL-4) опосредует важные провоспалительные функции при астме, включая индукцию изотипа IgE, экспрессию молекулы адгезии сосудистых клеток-1 (VCAM-1), промотирование эозинофильной трансмиграции через эндотелий, секрецию слизи и дифференцировку лимфоцитов Т-хелперного типа 2, приводящих к высвобождению цитокинов. Астма представляет собой сложное генетическое расстройство, которое связано с полиморфизмами в промоторе гена IL-4 и белками, участвующими в сигнале IL-4. Растворимый рекомбинантный рецептор IL-4 не обладает трансмембранными и цитоплазматическими активирующими доменами и поэтому может секвестрировать IL-4 без опосредования клеточной активации. Мы сообщаем результаты первых клинических испытаний, которые демонстрируют клиническую эффективность этого естественного антагониста IL-4 в качестве терапевтического средства при астме.
Интерлейкин (IL) -4 является ключевым цитокином в развитии аллергического воспаления. Он связан с индукцией ε-изотипного переключателя и секрецией IgE с помощью В-лимфоцитов [1]. IgE-опосредованные иммунные ответы дополнительно усиливаются IL-4 благодаря его способности регулировать рецепторы IgE на поверхности клетки: низкоаффинный IgE-рецептор (FcRRII, CD23) на В-лимфоцитах и мононуклеарные фагоцитарные клетки и высокоаффинный IgE-рецептор ( FcRI) на тучных клетках и базофилах [2]. IgE-зависимая активация тучных клеток, индуцированная IL-4, играет ключевую роль в развитии немедленных аллергических реакций. Дополнительный механизм, с помощью которого ИЛ-4 способствует обструкции дыхательных путей при астме, заключается в индукции экспрессии гена муцина и гиперсекреции слизи [3]. IL-4 увеличивает экспрессию эотаксина и других воспалительных цитокинов из фибробластов, которые могут способствовать воспалению и ремоделированию легких при хронической астме [4].
Важной активностью IL-4 в продвижении клеточного воспаления в астматическом легком является индукция молекулы адгезии сосудистых клеток (VCAM) -1 на сосудистом эндотелии [5]. Благодаря взаимодействию VCAM-1 IL-4 способен направлять миграцию Т-лимфоцитов, моноцитов, базофилов и эозинофилов в воспалительные локусы. Кроме того, ИЛ-4 ингибирует апостип эозинофилов и способствует эозинофильному воспалению, индуцируя хемотаксис эозинофилов и его активацию за счет повышенной экспрессии эотаксина [6].
Существенной биологической активностью ИЛ-4 в развитии аллергического воспаления является способность управлять дифференцировкой наивных Т-хелперных типов 0 (TH0) лимфоцитов в Т-лимфоциты [7,8]. Эти клетки TH2 способны секретировать IL-4, IL-5, IL-9 и IL-13, но теряют способность продуцировать интерферон-γ [9]. Используя клетки человека, введение IL-4 генерирует Т2-подобные лимфоцитарные клоны, тогда как инкубация с анти-IL-4 блокирует эту дифференциацию. Индукция TH2-подобных лимфоцитов является уникальной биологической активностью IL-4, поскольку рецепторы IL-4, а не рецепторы IL-13 экспрессируются на Т-клетках [10]. Образование IgE и индукция VCAM-1 представляют собой активности, связанные с родственным цитокиновым IL-13.
В дополнение к управлению дифференцировкой TH0-лимфоцитов в фенотип TH2, IL-4 играет важную роль в аллергических иммунных ответах вследствие его способности предотвращать апоптоз Т-лимфоцитов. Активация этих клеток приводит к быстрой пролиферации и секреции цитокинов. При отсутствии соответствующего сигнала активированные Т-хелперные лимфоциты быстро становятся апоптотическими и устраняются. Несколько цитокинов, включая IL-2, IL-4, IL-7 и IL-15, эффективны в предотвращении гибели активированных Т-клеток. Из них наиболее эффективны IL-4 и IL-15 [11]. Ингибирование апоптоза IL-4 может быть частично опосредовано способностью этого цитокина поддерживать уровни белка Bcl-2, способствующего выживанию, в Т-клетках [11]. Апоптоз Т-лимфоцитов может индуцироваться через сигналы, опосредуемые Fas-лигандом через рецептор Fas (CD95), экспрессируемый в этих клетках. Т-клетки из астматических легких демонстрируют дефектное выражение Fas. Совместное культивирование Т-клеток с IL-4 снижает регуляцию экспрессии Fas на поверхности клетки. Экспрессия IL-4 в астматическом легком и вторичное отсутствие экспрессии Fas могут объяснить стойкость воспалительных клеточных инфильтратов при аллергической астме. Апоптоз TH2-лимфоцитов (и, возможно, эозинофилов) мог бы представлять собой путь, посредством которого блокада IL-4 дает быстрые клинические преимущества при астме. Кортикостероиды обычно вызывают апоптоз в зрелых Т-хелперных клеточных линиях. Индукция гибели клеток предотвращается IL-2 в клетках TH1 и IL-4 в клетках TH2 [12]. IL-4 и IL-2 синергируют, чтобы сделать лимфоциты огнеупорными к противовоспалительным влияниям кортикостероидов. Это является результатом альтернативного сплайсинга мРНК глюкокортикоидного рецептора (GCR), генерирующего GCR-β. GCR-β неспособна связывать глюкокортикоиды, но может связывать и противодействовать трансактивирующей активности классического GCR-α. Через эти механизмы аутокринное продуцирование IL-4 клетками TH2 в астматическом легком может привести к тому, что эти клетки будут сопротивляться положительным влияниям кортикостероидов [13]. Синергические преимущества рецептора интерлейкина-4 (IL-4R) с ингаляционными кортикостероидами можно ожидать у пациентов с астмой.
IL-4 увеличивается в сыворотке и бронхоальвеолярном лаваже аллергических индивидуумов [14,15], а мононуклеарные клетки периферической крови от атопических астматиков увеличивают продукцию IL-4 в ответ на пылевой клещ-антиген [16]. Небулизированное введение IL-4 пациентам с легкой астмой привело к значительному увеличению гиперчувствительности дыхательных путей, что было связано с увеличением числа эозинофилов мокроты [17]. Различные результаты показывают, что атопические индивидуумы изменили регуляцию в своей продукции IL-4. В ответ на бактериальные антигены CD4 + T-клеточные клоны из атопии продуцируют IL-4 и IL-5, тогда как неатопические CD4 + T-клеточные клоны продуцируют TH1-цитокины [18]. Атопические субъекты имеют более высокую частоту Т-клеток, продуцирующих IL-4, чем нормальные субъекты [19], а клоны Т-клеток, полученные из лимфоцитов пуповинной крови новорожденных с атопическими родителями, вызывают более высокие концентрации IL-4, чем новорожденные лимфоциты новорожденных, атопических родителей [20].
Астма связана с хромосомой 5q31-33 с помощью поиска генома и скрининга генов-кандидатов [21,22]. Этот локус включает гены для TH2-цитокинов IL-4, IL-5, IL-9 и IL-13. Аберрантное производство IL-4 или гиперреактивность к этому цитокину вследствие наследственных дефектов может также способствовать патофизиологии астмы. Оптимальная сигнализация IL-4 (рассмотренная в [23]) включает его взаимодействие с рецепторами, состоящими из гетеродимера высокоаффинного IL-4Rα и либо общей цепи γ-цепи, либо цепи α-рецептора IL-13. Связывание IL-4 приводит к фосфорилированию тирозина молекул сигнальной трансдукции, включая мотивы, подобные тем, которые связаны с сигналами инсулина, субстратом рецептора инсулина (IRS) -1, IRS2 и сигнальным преобразователем и активатором транскрипции (Stat) -6 [23] , IRS1 и IRS2 регулируют пролиферацию и защиту от апоптоза. Stat-6 необходим для IL-4-зависимой экспрессии CD23, MHC класса II, тяжелой цепи и IL-4Rα [23] и, как отмечено, имеет важное значение для дифференцировки TH2-лимфоцитов. BCL6 представляет собой белок, который противодействует стимуляционному эффекту Stat-6 путем связывания с активными промоторными элементами Stat-6 и подавлением транскрипции. С помощью этого механизма показано, что BCL6 подавляет индуцированное IL-4 продукцию IgE [24]. Астма генетически связана с полиморфизмами в генах, кодирующих IL-4Rα, IL-13Rα, Stat-6 и BCL6. Резюме естественных полиморфизмов, которые связаны с атопией и астмой и может влиять на продукцию IL-4 или передачу сигналов IL-4, приведено в Таблице 1. Физически запрограммированные люди с гиперчувствительностью к IL-4 представляют собой когорту субъектов, которые могут быть терапевтически чувствительны к антагонисту IL-4.
Гены, связанные с сигнализацией IL-4 и IL-4, связанные с астмой и аллергией
Нейтрализация IL-4 антителами против IL-4 у мышей ингибирует развитие аллерген-специфического IgE [25] и снижает эозинофильное воспаление [25] и реактивность дыхательных путей [26]. Эти результаты были подтверждены с использованием нокаутных мышей IL-4. В дополнение к этим эффектам рекомбинантный растворимый рецептор IL-4, который действует как приманка для связывания IL-4 и нейтрализует активность IL-4, был продемонстрирован в моделях мыши для блокирования гиперреактивности, вызванной аллергеном, при гиперреактивности [27] и для ингибирования VCAM -1, приток эозинофилов и чрезмерное продуцирование слизи [28]. Путем ингибирования дифференцировки TH2-подобной лимфоцитов и развития апоптоза установленных TH2-подобных клеток блокада IL-4 ингибирует биологическую активность IL-4 и, что не менее важно, снижает продукцию IL-5. Тем не менее, мыши, дефицитные в ИЛ-4 (нокауты IL-4), сохраняют остаточные ответы ТГ2, что может объяснить стойкую низкоуровневую экспрессию IL-5, эозинофилии и гиперреактивности дыхательных путей, наблюдаемую в некоторых из этих исследований на мышах [10]. Несмотря на то, что всегда существует опасность чрезмерной интерпретации данных, полученных на животных моделях, эти наблюдения подтверждают роль ИЛ-4 при астме и аллергических расстройствах.
IL-4R представляет собой гетеродимерный комплекс клеток, состоящий из специфической высокоаффинной α-цепи (IL-4Rα) и второй цепи, которая может быть либо общей γ-цепью, либо α-цепочкой рецептора IL-13 ( IL-13Rα) [23]. Общая γ-цепь обнаружена в нескольких рецепторах цитокинов. Хотя обе цепи гетеродимера необходимы для опосредования клеточной активации, для связывания IL-4 необходим только IL-4Rα. Секретные формы IL-4Rα встречаются естественным образом и выражаются при аллергическом воспалении [29]. Растворимый IL-4R способен взаимодействовать с IL-4, даже несмотря на отсутствие трансмембранных и цитоплазматических доменов. Поскольку он не индуцирует клеточную активацию, а вместо этого связывает и секвестры IL-4, растворимый IL-4R служит в качестве противовоспалительного механизма, который может противодействовать воздействию IL-4 (фиг.1) и может представлять собой эндогенный ауторегуляторный или гомеостатический механизм , Действуя как приманка для связывания и нейтрализации циркулирующего цитокина, в сочетании с высокой специфичностью и высокой аффинностью связывания для цитокина, делает растворимый рецептор идеальным в качестве антагониста цитокинов. Растворимый рекомбинантный рецептор человеческого IL-4 (rhuIL-4R; Nuvance ™; Immunex) представляет собой внеклеточную часть человеческого IL-4Rα, кодирующий ген, который был клонирован, и его продукт экспрессируется в экспрессирующей системе млекопитающих. Поскольку последовательности аминокислот и углеводов или гликозилирования идентичны последовательностям IL-4R человека, растворимые рецепторы являются относительно неиммуногенными. Это контрастирует с химеризованными или гуманизированными моноклональными антителами, которые сохраняют некоторые мышиные последовательности или мутеины IL-4, которые не являются достоверными. Показано, что растворимый рецептор фактора некроза опухолей Enbrel® является безопасным и высокоэффективным для долгосрочного лечения ревматоидного артрита у взрослых и детей.
IL-4 с клеточным IL-4R и его ингибирование растворимым IL-4R (sIL-4R). (а) IL-4 связывается с клеточным IL-4R, опосредуя клеточную активацию и важные провоспалительные функции при астме. Для ясности показана только цепочка IL-4Rα гетеродимера, представленная тремя доменами: внеклеточным (зеленым), трансмембранным (белым) и цитоплазматическим (красным). Следует, однако, отметить, что обе цепи гетеродимера должны инициировать внутриклеточную сигнализацию. (b) sIL-4R состоит из внеклеточной части IL-4Rα. Он сохраняет способность связывать IL-4 с высокой аффинностью и высокой специфичностью и тем самым функционирует как приемник-приемник, который может секвестрировать естественный IL-4 и препятствовать его активации клетки. sIL-4R не может активировать сотовую сигнализацию; таким образом, он служит в качестве противовоспалительного средства, которое может противодействовать действию IL-4 при астме.
Многообещающие результаты в доклинических исследованиях привели к предварительным исследованиям, в которых rhuIL-4R оказался безопасным и эффективным в лечении пациентов с астмой [30,31]. В ходе фазы I испытуемые с легкой или умеренной персистирующей астмой были удалены из их ингаляционных кортикостероидов и случайным образом назначались для приема плацебо или rhuIL-4R при 0,5 или 1,5 мг с помощью распылителя [30]. Не было никаких значительных побочных эффектов, связанных с исследуемым препаратом, и у пациентов не было выявлено антител против rhuIL-4R. Фармакокинетический анализ показал длительный период полувыведения в сыворотке около 5 дней, предполагая, что еженедельная терапия будет эффективной. После острого прекращения ингаляционных кортикостероидов ни один субъект в группе rhuIL-4R 1,5 мг не удалялся для обострения астмы, по сравнению с тремя из восьми в группе rhuIL-4R 0,5 мг и двумя из восьми в группе плацебо. Лечение 1,5 мг rhuIL-4R ассоциировалось со значительно лучшим объемом форсированного выдоха за 1 с (FEV1) через 2 часа после обработки и в дни 2, 4 и 15 (P
В двойном слепом фазовом I / II плацебо-контролируемом исследовании 62 умеренных персистирующих астматических пациента были рандомизированы на 12 недельных распылений 0,75, 1,5 или 3,0 мг rhuIL-4R (Nuvance ™) или плацебо [31]. Перед исследованием пациенты задокументировали свою зависимость от ингаляционных кортикостероидов путем обострения при астме, вызванного одним или двумя 50% сокращениями ингаляционной дозы кортикостероидов с интервалом в 2 недели. После стабилизации при вдыхании кортикостероидов в течение 2 недель ингаляционные кортикостероиды были прекращены в то время, когда началось исследование лекарственного препарата. IL-4R был безопасным и хорошо переносимым. Антитела против rhuIL-4R имели место у одного пациента, который не нейтрализуется и не вызывает никаких симптомов. Эффективность была продемонстрирована значительным снижением FEV1, наблюдаемым в группе плацебо (-0,35 л; -13% предсказано), которое не наблюдалось в группе лечения 3,0 мг (-0,09 л; -2% предсказано, Р = 0,053 по сравнению с тремя -месячный период лечения). Ежедневная оценка FEV1, измеренная пациентом, также продемонстрировала значительное снижение в группе плацебо (-0,5 л, -18%), которая не наблюдалась в группе лечения 3,0 мг (-0,1 л, P = 0,02 в течение трехмесячного периода лечения -4% предсказано). Во второй половине дня FEV1 также улучшился с максимальной дозой и был на 19% лучше, чем плацебо. Эффективность rhuIL-4R была дополнительно подтверждена отсутствием увеличения показателя симптомов астмы (изменение 0,1) в группе лечения 3,0 мг по сравнению с группой плацебо (с изменением 1,4 по сравнению с 1-м, P = 0,075).
Эти исследования показывают, что IL-4R является потенциально безопасным и эффективным новым лечением от астмы без использования кортикостероидов. Дозирование один раз в неделю с помощью ингаляционных препаратов, нацеленных на легкие, вероятно, улучшит соблюдение пациентами, что является одной из самых серьезных проблем для эффективного лечения астмы. Ингибируя воспаление в ключевом контрольном пункте, IL-4R может повлиять на длительную прогрессию болезни при астме. IL-4R также должен быть эффективным у пациентов с неаллергическими формами астмы. Хотя эти пациенты не проявляют аллерген-специфический IgE, наличие эозинофильного воспаления и повышенного общего IgE предполагает дифференцировку TH2-подобных лимфоцитов, которые ответственны за продукцию IL-5 и других цитокинов, которые способствуют развитию эозинофилии. Исходя из наших текущих знаний о дифференцировке IL-5-продуцирующих TH2-подобных лимфоцитов, этот процесс является зависимым от IL-4 и должен быть восприимчивым к подавлению с помощью терапии IL-4R. Предполагается, что другие атопические расстройства, такие как аллергический ринит и атопический дерматит, опосредуются IL-4 и могут также реагировать на блокаду IL-4 с помощью терапии ИЛ-4R. Растворимые исследования рецепторов IL-4 продолжаются, и этот класс препаратов представляет собой следующее поколение терапии астмы.
FEV1 = объем принудительного выдоха за 1 секунду; GCR = глюкокортикоидный рецептор; IL = интерлейкин; IL-4R = рецептор интерлейкина-4; IRS = субстрат рецептора инсулина; rhuIL-4R = растворимый рекомбинантный рецептор интерлейкина-4 человека; Stat = преобразователь сигнала и активатор транскрипции; VCAM = молекула адгезии сосудов.
Источник
Новые биологические препараты на основе моноклональных антител обещают перевести лечение астмы в область персонализированной медицины.
По данным ВОЗ, во всем мире бронхиальной астмой страдают около 235 млн. людей. Эксперты считают, что 20% имеют тяжелую форму болезни, среди них у 20% астма неконтролируемая (симптомы, в том числе кашель, свистящие хрипы, приступы удушья, обычно наблюдаются и днем, и ночью, мешая нормальной работе и заставляя постоянно использовать ингалятор).
Чаще всего астматики лечатся ингаляционными глюкокортикостероидами, но для больных тяжелой формой астмы стандартная терапия обычно не работает, потому что у астмы много причин и форм. Так, решающую роль в некоторых формах астмы играют интерлейкины – информационные молекулы, секретируемые клетками иммунной системы. Интерлейкин-5 (ИЛ-5), например, стимулирует созревание эозинофилов и их миграцию из костного мозга. Эозинофилы защищают от инфекций, но могут вызывать в легких воспаление в ответ на действие аллергенов. Интерлейкин-13 (ИЛ-13) и интерлейкин-4 (ИЛ-4) помогают эозинофилам проникать в легочную ткань, провоцируют клетки эпителия на производство избыточной слизи и повышают жесткость дыхательных путей.
Под влиянием ИЛ-13 клетки эпителия легких вырабатывают еще одно вещество, которое участвует в развитии хронического воспаления при бронхиальной астме,– белок периостин, причем при неконтролируемом течении болезни его уровень повышается, коррелируя с повышением ИЛ-13.
Когда фармацевты и врачи это поняли, то приступили к созданию биологической таргетной терапии, направленной на блокирование этих интерлейкинов. Так была разработана серия новых препаратов на основе моноклональных антител (вырабатываются иммунными клетками, принадлежащими к одному клеточному клону).
Что предлагают фармкомпании
У некоторых биопрепаратов была непростая судьба. Так, первые испытания меполизумаба в конце 1990-х годов с треском провалились, и GlaxoSmithKline положила лекарство на полку. В результате похожей ситуации Schering Plough (сейчас входит в состав Merck) прекратила разработку реслизумаба и продала права на него другой компании.
Оба лекарства блокируют интерлейкин-5 (ИЛ-5). Ученые предположили, что так можно снизить количество эозинофилов и, соответственно, уменьшить симптомы астмы. Они думали, что помогут всем астматикам, но оказалось, что не у всех больных астму провоцирует интерлейкин-5.
Сегодня уже понятно: первые испытания были неудачными потому, что тестировали препарат не на тех пациентах. В 2009 году, когда испытания меполизумаба возобновились, было доказано, что месячный курс подкожных инъекций снижает частоту астматических приступов на 53% по сравнению с группой плацебо и позволяет уменьшить ежедневную дозу оральных кортикостероидов без потери контроля над астмой у людей с высоким уровнем эозинофилов, который не снижается кортикостероидами. В конце 2015 года меполизумаб был одобрен в Европе и США для поддерживающего лечения пациентов старше 12 лет с тяжелой астмой и эозинофилией.
Клинические испытания реслизумаба израильской компании Teva Pharmaceutical Industries завершились сентябре 2014 года, доказав, что 30-дневный курс инъекций препарата пациентам с неконтролируемой астмой и повышенным уровнем эозинофилов сокращает число приступов на 50–60% по сравнению с группой плацебо. В 2016 году препарат был зарегистрирован в Европе и США для лечения взрослых пациентов с тяжелыми формами эозинофильной бронхиальной астмы.
Бенрализумаб британской компании AstraZeneca имеет несколько иной принцип действия: он блокирует не собственно интерлейкин-5, а его рецептор, снижая уровень эозинофилов в мокроте и крови. III фаза клинических испытаний, которая закончилась в мае 2017-го, показала, что через 28 недель после начала терапии бенрализумаб сокращает потребление глюкокортикоидов на 75% (на 25% в группе плацебо), а частота приступов астмы в годовом исчислении снижается на 55–70%. Средство предназначено для подкожного введения раз в четыре или восемь недель. Заявка на регистрацию лекарства была подана в Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США в ноябре 2016 года.
Фармкомпании занимаются и другими интерлейкинами – ИЛ-13 и ИЛ-4. В 2016 году Roche представила результаты III фазы испытаний препарата лебрикизумаб для пациентов с повышенным уровнем сывороточного периостина или эозинофилов крови. Увы, эффект оказался менее выраженным, чем в исследованиях II фазы, где у больных с повышенным уровнем периостина отмечалось 60-процентное снижение числа астматических приступов.
Хорошие перспективы у дупилумаба, созданного совместно компаниями Regeneron и Sanofi. Действие препарата основано на ингибировании общего рецептора ИЛ-4 и ИЛ-13. Дупилумаб уже зарегистрирован в США как средство для лечения атопического дерматита и сейчас проходит III фазу клинических испытаний для применения при неконтролируемой персистирующей астме у взрослых и подростков 11–16 лет. Компании планируют к концу 2017-го подать заявку в Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США на лицензирование препарата. Сейчас продолжаются испытания дупилумаба для лечения носовых полипов и эозинофильного эзофагита.
За и против
Главный недостаток биологических препаратов – их дороговизна. В США годовой курс омализумаба стоит $10 000, меполизумаба – $32 500.
Есть и другие недостатки. Ведь даже среди астматиков с «правильным» биологическим профилем трудно определить, блокатор какого интерлейкина давать тому или иному пациенту, поскольку биомаркеры, привязанные к определенному лекарству, могут сочетаться. «Что давать больным: ингибитор ИЛ-5 или блокатор ИЛ-13? – вопрошает Лиам Хини, исследователь астмы в Университете Квинс в Белфасте (Великобритания) и руководитель Программы стратификации рефрактерной астмы (RASP).– Мы не можем точно сказать».
Некоторые врачи вообще скептически относятся к биопрепаратам. Так, пульмонолог Парамесваран Наир из Университета Макмастера в Гамильтоне, провинция Онтарио, Канада, уверен, что неконтролируемая астма – это чаще всего результат неправильного или нерегулярного использования имеющихся средств. Даже в группе плацебо на III фазе испытаний метолизумаба число приступов снизилось на 50%, подчеркивает он. Врач считает, что более точное назначение существующих лекарств и работа по приучению больных к регулярному и правильному их использованию позволит достичь тех же результатов, что и дорогостоящие моноклональные антитела.
Кроме того, биопрепараты – это не панацея. «Конечно, мы видим значительную разницу в количестве осложнений, но это еще не полное излечение. В идеале мы хотели бы создать препарат, который позволил бы полностью отменить любую другую терапию», – заявляет Энтони Монтанаро, глава отделения аллергии и клинического иммунологии Орегонского университета здоровья и науки в Портленде (США).
Но несмотря на все недостатки, биопрепараты – это настоящий прорыв, уверена Анна Мёрфи, фармацевт-консультант по респираторным заболеваниям университетских клиник Лестерского траста Национальной службы здравоохранения Великобритании: «Это новый шаг на пути к персонализированной медицине. Мне приятно думать, что когда-нибудь можно будет сказать: «Давайте выясним, что провоцирует астму у этого больного, и подберем ему правильное лечение».
Источник: The Pharmaceutical Journal
Источник