Модели астмы у мышей
Текст научной статьи
на тему «РАЗРАБОТКА БЕЗАДЪЮВАНТНОЙ МОДЕЛИ ХРОНИЧЕСКОЙ БРОНХИАЛЬНОЙ АСТМЫ У МЫШЕЙ»
IMMUNOPATHOGENETIC MECHANISMS OF INFLAMMATORY
POLYNEUROPATHIES
Shevchenko A. V.
Pirogov Russian National Research Medical University, Moscow, Russia
Today it is critical to study the immunologic mechanisms of autoimmune neuropathies and new opportunities for their early detection and clinical course forecasting, to develop best algorithms of pathogenetic and after-care treatment. The aim of our study is investigation of clinical presentation, neurophysiological tests data, and immunological parameters of CIDP in childhood. Levels of IgG and IgM autoantibodies against gangliosides (asialo- GM1, GM1, GM2, GD1a, GD1b, and GQ1b); interleukins (IL-2, IL-4, IL-10, TNF-a); specific IgG and IgE against myelin basic protein (MBP) and total serum IgE of children with chronic inflammatory demyelinating polyneuropathies (CIDP), multiple sclerosis (MS) with polyneuropathy and hereditary motor and sensory neuropathy (HMSN) Type I were measured for comparative analysis.
Key words: antiganglioside autoantibodies, chronic inflammatory demyelinating polyneuropathy, multiple sclerosis
РАЗРАБОТКА БЕЗАДЪЮВАНТНОЙ МОДЕЛИ ХРОНИЧЕСКОЙ БРОНХИАЛЬНОЙ АСТМЫ У МЫШЕЙ
Шиловский И. П., Бабахин А. А., Прозорова М. С., Гайсина А. Р., Камышников О. Ю., Хаитов М. Р.
Федеральное государственное бюджетное учреждение «<Государственный научный
центр «<Институт иммунологии» Федерального медико-биологического агентства,
Москва, Россия
Бронхиальная астма (БА) является распространенным хроническим воспалительным заболеванием дыхательных путей. Для выяснения патофизиологии данного заболевания и для тестирования новых лекарственных средств чаще всего применяют острые адъю-вантные модели астмы. Такие модели БА являются краткосрочными, к тому же не в полной мере воспроизводят клиническую картину заболевания, а использование адъюванта не позволяет в последствии изучать на них адъювант-содержащие лекарственные средства. Поэтому главной целью данного исследования была разработка безадъювантной модели хронической бронхиальной астмы у мышей. В ходе работы был использован подкожный способ сенсибилизации мышей аллергеном, который позволил воссоздать основные признаки БА, такие как высокий уровень аллерген-специфических ^Е антител, профилирование иммунного ответа в сторону ^2, инфильтрация провоспалительных клеток в ткань легких и ремоделирование бронхов.
Ключевые слова: бронхиальная астма, воспаление, аллергены, цитокины
Введение. Бронхиальная астма (БА) это хроническое воспалительное заболевание дыхательных путей, характеризующееся обратимой обструкцией и гипер-реактивностью бронхов. От БА страдает от 4 до 18% населения в разных странах, а смертность составляет порядка 250 тыс. в год [1, 4]. Также астма приводит к существенными экономическими потерям, в США расходы на лечение БА составляют 18 млрд. долларов США, а в Евросоюзе 17,7 млрд. евро
в год. В связи с этим, активно изучаются механизмы БА и создаются новые средства ее терапии. Значительная роль в изучении молекулярных механизмов БА и в тестировании новых противоастматических препаратов отводится мышиным моделям астмы.
Различают острые и хронические модели БА [6]. Острые модели успешно воссоздают некоторые клинические признаки заболевания, такие как: развитие аллергического воспаления
за счет эффекторных клеток (в частности эози-нофилов), гиперреактивность дыхательных путей. Данные модели менее трудоемки, поэтому используются наиболее часто. Хронические модели БА, помимо указанных признаков астмы, воспроизводят еще и ремоделирование бронхов, которое включает гипертрофию гладких мышц, гиперплазию бокаловидных клеток, утолщение субэпителиальной базальной мембраны, увеличение толщины стенок дыхательных путей, что ведет к необратимой обструкции дыхательных путей. Поскольку ремоделирование является едва ли не ключевым признаком БА, то хронические модели, несмотря на свою трудоемкость, в большей степени соответствуют клинической картине, наблюдаемой у человека [5, 7].
Для усиления развития признаков заболевания в большинстве хронических моделей применяют адъювант — гидроокись алюминия. Но его использование приводит к появлению стресса у животных, т.к. данное соединение имеет нефизиологическую природу; кроме того, его применение затрудняет изучение адъювант-содержащих препаратов, ввиду конкуренции адъюванта, использующегося в изучаемом препарате с адъювантом, использующимся в моделировании [2, 3].
Поэтому, целью данной работы было создание безъадьювантной хронической модели БА у мышей, отражающей основные клинические признаки заболевания.
Материал и методы. Исследования проводились на мышах самках BALB/c, в возрасте 6-8 недель, весом 20-22 г. В эксперименте изучались два варианта моделирования хронической БА — с адъювантом и без него. В обеих группах проводилась трехкратная сенсибилизация в дни 0, 14 и 28 модельным аллергеном -овальбумином (OVA). Через 12 дней и 33 дня после сенсибилизации осуществляли два этапа провокации (41-43 и 62-64 дни), путем интра-назального введения OVA в дозе 500 мкг/мышь. Третья группа животных никаким манипуляциям не подвергалась.
Через 7 дней после последней сенсибилизации (35 день), и на следующий день после первичной и вторичной провокации (44 и 65 дни) у лабораторных мышей забирали кровь, готовили сыворотку и проводили измерение уровней аллерген-специфических антител IgE, IgG2a, IgG1 с помощью ИФА. Через сутки после провокаций (44 и 65 дни) изучалась гиперреактивность бронхов методом неинвазивной плетиз-
мографии. Через двое суток после провокаций (45 и 66 дни) проводился забор бронхоальвео-лярного лаважа (БАЛ), его клеточный состав изучался с помощью цитометрии и световой микроскопии. Из клеток БАЛ была выделена РНК, для определения уровней экспрессии генов ГЬ-4 и №N7 методом ПЦР в реальном времени. Также в эти дни был произведен забор левого легкого для гистологического исследования.
Результаты и обсуждение. Значительную роль в патогенезе БА играют ^Е-антитела, они связываются с рецептором Fc£RI на тучных клетках, способствуя их дегрануляции и высвобождению медиаторов воспаления. Поэтому были изучены уровни специфических ^Е-антител в сыворотке крови методом ИФА. Установлено, что в обеих экспериментальных группах уровень ^Е был существенно выше чем у интакт-ных на всех этапах эксперимента. Однако при безаъювантном моделировании ^Е-ответ был выше, чем при адъювантном в два раза. Поскольку развитие аллергической реакции зависит от ^2/^1-баланса, то нами был изучен уровень специфических IgG2a-антител в сыворотке крови, которые являются маркерами ^1-от-вета. Было показано, что при адъювантном моделировании уровень IgG2a был выше, чем при безадъювантном примерно в два раза, на всех этапах эксперимента. Таким образом, повышение ^Е и снижение IgG2a у животных, подвергшихся безадъювантному моделированию свидетельствует о выраженном профилировании иммунного ответа в сторону аллергического ^2. Также был изучен уровень IgG1 антител, т.к. этот субкласс является маркером ^2-ал-лергического ответа, как и ^Е. Несмотря на низкий уровень ^Е, уровень IgG1 у животных, подвергшихся адъювантному моделированию был выше в семь раз по сравнению с безадъювант-ным. Такое изменение уровня антительного ответа можно объяснить участием алюминия в генерации IgG1 антител.
Общим патогенетическим признаком БА, является повышенная реактивность бронхов в ответ на воздействие физических и фармакологических факторов. Поэтому была изучена удельная сопротивляемость бронхов у экспериментальных мышей в ответ на аэрозольное введение им бронхоконстриктора (метахоли-на) методом неинвазивной плетизмографии. В результате, у животных при обоих способах моделирования сопротивляемость бронхов была выше, чем у интактных, что говорит
об успешном воспроизведении одного из ключевых признаков БА.
Одним из главных участников аллергического воспаления являются провоспалительные клетки, в частности эозинофилы, которые инфильтрируют в ткань легких и высвобождают медиаторы воспаления. Поэтому был изучен клеточный состав смывов легких (БАЛ), с помощью методов цитометрии и световой микроскопии. Было показано, что после первой провокации происходит трехкратное увеличение инфильтрации клеток в просвет бронхов при обоих способах моделирования. У модельных групп наблюдалась инфильтрация преимущественно про-воспалительных клеток: эози-нофилов, лимфоцитов и нейтрофилов. После второй провокации наблюдалась еще более выраженная (четырехкратная) инфильтрация про-воспалительных клеток.
При изучении гистологической картины воспаления в ткани легких было показано наличие слизистой метаплазии и гиперплазии эпителия бронхов и гипертрофии гладких мышц, что свидетельствует о ремоделировании бронхов у экспериментальных животных. Также в ткани легких обоих экспериментальных групп детектировалась инфильтрация эозинофилов, нейтрофилов и лимфоцитов, что подтверждает развитие аллергического воспаления.
Известно, что значительную роль в индукции аллергического ^2-ответа и патогенезе БА играет ^-4, который активирует синтез ^Е-антител, способствует инфильтрации провос-палительных клеток, в частности эозинофилов и нейтрофилов в ткань легких и гиперреактивности бронхов. Поэтому нами был изучен уровень экспрессии ГЬ-4 в клетках, полученных из БАЛ методом ПЦР в реальном времени. Как оказалось, в обеих модельных группах экспрессия ГЬ-4 была в десятки раз выше, чем у интактных животных, как после первичной, так и после вторичной провокации, причем экспрессия ^-4 увеличивалась по мере увеличения количества провокаций аллергеном. После второй провокации экспрессия ГЬ-4 была в два раза выше у животных, подвергавшихся безадъювантному моделированию. Чтобы оценить изменения ^2/^1-балланса, также была изучена экспрессия ^N7, который является маркером ^1-иммунного ответа. Во всех экспериментальных группах экспрессия ^N7 была сходной. Таким образом, существенный рост экспрессии ^-4, при неизменном уровне №N7
позволяет утверждать, что именно безадъю-вантный способ моделирования приводит к более выраженному профилированию иммунного ответа в сторону Th2.
Для дальнейшего прочтения статьи необходимо приобрести полный текст. Статьи высылаются в формате PDF на указанную при оплате почту. Время доставки составляет менее 10 минут. Стоимость одной статьи — 150 рублей.
Источник
1. Воробьев П.А. Клинико-экономический анализ. Изд. 3-е. М.: Ньюдиамед, 2008, 778 с. С. 175-178.
2. Глобальная стратегия лечения и профилактики бронхиальной астмы (GI-NA). Пересмотр 2006 г. Перевод с англ. под ред. Чучалина А.Г. М.: Издательский дом «Атмосфера», 2007, 104 е., ил.
3. Гущин И.С. Аллергическое воспаление и его фармакологический контроль. М.: Фармарус Принт, 1998.
4. Дрожжев М.Е., Лев Н.С., Костюченко М.В. и соавт. Современные показатели распространенности бронхиальной астмы среди детей. Пульмонология, 2002; (1): 42-46.
5. Кисели Д. Практическая микротехника и гистохимия. Будапешт: Изд-во АН Венгрии, 1962, с. 399.
6. Крючков Н.А., Бабахин А.А., Хаитов М.Р. Моделирование бронхиальной астмы у лабораторных мышей: общие принципы и значение. Физиология и патология иммунной системы, 2008; (2):3-7.
7. Княжеская Н.П. Тяжелая бронхиальная астма. Consilium medicum, 2002; 4(4): 189-197.
8. Литвин Л.С., Бабахин А.А., Стеценко О.Н. и др. Оценка различных способов иммунизации при моделировании экспериментального аллергического ответа. Российский аллергологический журнал. 2005; (1): 35-42.
9. Литвин Л.С., Бабахин А.А., Хаитов М.Р. и др. Модели экспериментальной атопической бронхиальной астмы. Патофизиология и экспериментальная терапия, 2006; (3): 26-27.
10. Литвин Л.С., Хаитов М.Р., Бабахин А.А. и др. Характеристика экспериментальной модели бронхиальной астмы, полученной без использования адъюванта. Аллергология и иммунология, 2007, т.8, №1, с.40.
11. Никитин В.М. Атлас клеток крови сельскохозяйственных и лабораторных животных. М.: Гос. изд-во сельскохозяйственной литературы, 1949.
12. Паттерсон Р., Грэммер Л.К., Гринбергер П.А. Аллергические болезни: диагностика и лечение. Пер. с англ. Под. ред. А.Г.Чучалина, И.С. Гущина, Э.Г. Улумбекова, Р.С. Фассахова. М.: ГЭОТАР МЕДИЦИНА, 2000, 768 с.
13. Пыцкий В.И. Обоснование классификации форм бронхиальной астмы и анализ их патогенеза. Астма, 2000; 1(1): 14-26.
14. Чучалин А.Г. Бронхиальная астма. М.: ИД «Русский врач», 2001.
15. Чучалин А.Г. Черняк Б.А., Тяренкова С.Н., Буйнова С.В. Распространенность и клинико-аллергологическая характеристика бронхиальной астмы в Восточной Сибири. Пульмонология, 1999; 1: 42-49.
16. Ahn J.H., Kim С.Н., Kim Y.H. et al. Inflammatory and remodeling.events in asthma with chronic exposure to house dust mites: a murine model. J. Korean Med. Sci., 2007; 22: 1026-33.
17. Ait-Khaled N., Enarson D.A. Management of asthma. A Guide to the essentials of good clinical practice. Second ed. International union against tuberculosis and lung disease, 2005.
18. Ait-Khaled N., Enarson D.A., Bousquet J. Chronic respiratory diseases in developing countries :the burden and strategies for prevention and management. Bull. World Health Organ., 2001; 79: 971-979.
19. Almqvist C., Wickman M., Perfetti L. et al. Worsening of asthma in children allergic to cats, after indirect exposure to cat at school. Am. J. Respir. Crit. Care Med., 2001; 163(3 pt 1): 694-8.
20. Araujo M.I., Hoppe B.S., Medeiros M. Jr, Carvalhol E.M. Schistosoma man-soni infection modulates the immune response against allergic and autoimmune diseases. Mem. Inst. Oswaldo Cruz, Rio de Janeiro, 2004; 99(suppl. I): 27-32.
21. Ashcroft T., Simpson J.M., Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol., 1988; 41: 467-470.
22. Azzawi M., Bradley B., Jeffery P.K. et al. Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am. Rev. Respir. Dis., 1990; 142: 1407-1413.
23. Bartra J., Mullol J., del Cuvillo A. et al. Air pollution and allergens. J. Investig. Allergol. Clin. Immunol., 2007; 17(Suppl. 2): 3-8.
24. Bates J., Irvin C., Brusasco V. et al. The use and misuse of Penh in animal models of lung disease. Am. J. Respir. Cell Mol. Biol., 2004; 31: 373-374.
25. Baumans V. Use of animals in experimental research: an ethical dilemma? Gene Therapy, 2004; 11: S64-S66.
26. Beasley R. The Global Burden of Asthma Report, Global Initiative for Asthma (GINA), 2004. Available from: www.ginasthma.org.
27. Bischof R.J., Snibson K., Shaw R., Meeusen E.N.T. Induction of allergic inflammation in the lungs of sensitized sheep after local challenge with house dust mite. Clin. Exp. Allergy, 2003; 33:367-75.
28. Bleecker E., Postma D., Meyers D. Evidence for multiple genetic susceptibility loci for asthma. Am. J. Respir. Crit. Care Med., 1997; 156(Suppl. 4): 113-116.
29. Bockamp E., Maringer M., Spangenberg C. et al. Of mice and models: improved animal models for biomedical research. Physiol. Genomics, 2002, 11: 115-132.
30. Bollinger M.E., Eggleston P.A., Flanagan E., Wood R.A. Cat antigen in homes with and without cats may induce allergic symptoms. J. Allergy Clin. Immunol., 1996; 97: 907-14.
31. Bousquet J., Chanez P., Lacoste J.Y. et al. Eosinophilic inflammation in asthma. N. Engl. J. Med., 1990; 323: 1033-1039.
32. Braun M.C., He J., Wu C.Y., Kelsall B.L. Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor betal and beta2 chain expression. J. Exp. Med., 1999; 189: 541-552.
33. Carpenter D.O., Arcaro K., Spink D.C. Understanding the human health effects of chemical mixtures. Environ. Health. Perspect., 2002; 110(suppl 1): 25-42.
34. Cho Y., Miller M., Baek K., et al. Inhibition of airway remodeling in IL-5-deficient mice. J. Clin. Invest., 2004; 113: 551-560.
35. Chung S.K., Lee A.Y.W., Chung S.S.M. Mouse models for human diseases. Hong Kong Med. J., 1997; 3: 201-209.
36. Conejero L., Higaki Y., Baeza M.L. Pollen-induced airway inflammation, hyper-responsiveness and apoptosis in a murine model of allergy. Clin. Exp. Allergy, 2007; 37(3): 331-8.
37. Corry D.B., Folkesson H.G., Warnock M.L. et al. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J. Exp. Med., 1996; 183: 109-117.
38. Craig W. Relevance of animal models for clinical treatment. Eur. J. Clin. Microbiol. Infect. Dis., 1993; 12 (suppl. 1): S55-S57.
39. Creticos P.S., Reed C.E., Norman P.S. et al. Ragweed immunotherapy in adult asthma. N. Engl. J. Med., 1996; 334: 501-506.
40. Custovic A., Green R., Taggard S.C. et al. Domestic allergens in public places. II. Clin. Exp. Allergy, 1996; 26(11): 1246-1252.
41. Custovic A., Wijk R.D. The effectiveness of measures to change the indoor environment in the treatment of allergic rhinitis and asthma: ARIA update (in collaboration with GA(2)LEN). Allergy, 2005; 60(9): 1112-1115.
42. D’Amato G., Liccardi G., D’Amato M., Cazzola M. Outdoor air pollution, climatic changes and allergic bronchial asthma. Eur. Respir. J., 2002; 20: 763776.
43. Daniel C., Repa A., Wild C. et al. Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1. Allergy, 2006; 61(7): 812-819.
44. Dixon A.K., Fisch H.U. Animal models and ethological strategies for early drug-testing in humans. Neurosci. Biobehav. Rev., 1998; 23(2): 345-358.
45. Eisenbarth S.C., Piggott D.A., Huleatt J.W. et al. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med., 2002; 196: 1645-1651.
46. Elias J.A., Lee C.G., Zheng T. et al. New insights into the pathogenesis of asthma. J. Clin. Invest., 2003; 111:291-297.
47. Ennis D.P., Cassidy J.P., Mahon B.P. Acellular pertussis vaccine protects against exacerbation of allergic asthma due to Bordetella pertussis in a murine model. Clin. Diagnostic. Lab. Immun., 2005; (3): 409-417.
48. Epstein M.M. Are mouse models of allergic asthma useful for testing novel therapeutics? Exp. Toxicol. Pathology, 2006; 57(S2): 41-44.
49. Erwin E.A., Wickens K., Custis N.J. et al. Cat and dust mite sensitivity and tolerance in relation to wheezing among children raised with high exposure to both allergens. J. Allergy Clin. Immunol., 2005; 115: 74-9.
50. Faul J.L., Tormey V.J., Leonard C. et al. Lung immunopathology in cases of sudden asthma death. Eur. Respir. J., 1997; 10: 301-307.
51. Feinberg A.P. Epigenetics at the epicenter of modern medicine. JAMA, 2008; 299(11): 1345-1350.
52. Finegold I. Allergen immunotherapy: present and future. Allergy Asthma Proc., 2007; 28(1): 44-49.
53. Finkelstein S.E., Heimann D.M., Klebanoff C.A. et al. Bedside to bench and back again: how animal models are guiding the development of new immunotherapies for cancer. J. Leukoc. Biol., 2004; 76: 333-337.
54. Foster P.S., Hogan S.P., Ramsay AJ. et al. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med., 1996; 183: 195-201.
55. Fox D.A., Choilazzi N., Katz D.H. Hapten-specific IgE antibody responses in mice. V. Differential resistance of IgE and IgG B-lymphocytes to X-radiation. J. Immunol., 1976; 117: 1622-1628.
56. Georas S.N., Guo J., De Fanis U., Casolaro V. T-helper cell type-2 regulation in allergic disease. Eur. Respir. J., 2005; 26: 1119-1137.
57. Gern J.E., Busse W.W. Relationship of viral infections to wheezing illnesses and asthma. Nat. Rev. Immunol., 2002; 2(2): 132-138.
58. Glaab T., Taube C., Braun A., Mitzner W. Invasive and noninvasive methods for studying pulmonary function in mice. Respiratory Research, 2007; 8: 63.
59. Gounni A.S. The high-affinity IgE receptor (FceRI): a critical regulator of airway smooth muscle cells? Am. J. Physiol. Lung Cell Mol. Physiol., 2006; 291: L312-321.
60. Grogan J.L., Mohrs M, Harmon B, et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity, 2001; 14: 205-215.
61. Halonen M., Stern D.A., Wright A.L. et al. Alternaria as a major allergen for asthma in children raised in a desert environment. Am. J. Respir. Crit. Care Med., 1997; 155: 1356-1361.
62. Hamid Q., Song Y., Kotsimbos T.C. et al. Inflammation in small airways in asthma. J. Allergy Clin. Immunol., 1997; 100: 44-51.
63. Havaux X., Zeine A., Dits A., Denis O. A new mouse model of lung allergy induced by the spores of Alternaria alternate and Cladosporium herbarum molds. Clin. Exp. Immun, 2004; 139: 179-188.
64. Herz U., Braun A., Ruckert R., Renz H. Various immunological phenotypes are associated with increased airway responsiveness. Clin. Exp. Allergy, 1998; 28: 625-634.
65. Holgate, S.T., Davies D.E., Lackie P.M. et al. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J. Allergy Clin. Immunol., 2000; 105: 193-204.
66. Hoymann H.-G. New developments in lung function measurements in rodents. Exp. Toxicol. Pathol., 2006; 57(S2): 5-11.
67. Humbert M., Menz G., Ying S. et al. The immunopathology of extrinsic (atopic) and intrinsic (non-atopic) asthma: more similarities than differences. Immunol. Today, 1999; 20: 528-533.
68. Joachim R.A., Quarcoo D., Arck P.S. et al. Stress enhances airway reactivity and airway inflammation in an animal model of allergic bronchial asthma. Psychosomatic Medicine, 2003; 65: 811-815.
69. Johnson J.R., Wiley R.E., Fattouh R. et al. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am. J. Respir. Crit. Care Med., 2004; 169: 378-385.
70. Karol M.H. Animal models of occupational asthma. Eur. Respir. J, 1994; 7: 555-568.
71. Kay A.B. Allergy and allergic diseases. First of two parts. N. Engl. J. Med., 2001; 344: 30-37.
72. Kim J., Merry A.C., Nemzek J.A. et al. Eotaxin represents the principal eosinophil chemoattractant in an novel murine asthma model induced by house dust containing cockroach allergens. The Journal of Immunology, 2001; 167: 2808-2815.
73. Kips J.P., Anderson G.P., Fredberg J.J. et al. Murine models of asthma. Eur. Respir. J., 2003; 22: 374-382.
74. Kruzel M.L., Bacsi A., Choudhury B. et al. Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology, 2006; 119: 159-166.
75. Kryuchkov N.A., Babakhin A.A., Khaitov M.R., Martinov A.I. Adjuvant-free mouse model of bronchial asthma on causally relevant G6 allergen. II International congress IMD, Moscow, 2007.
76. Kryuchkov N.A., Bashkatova Yu.N., Khaitov M.R., Litvin L.S. IgE Immune response in vivo to timothy grass allergen. XXVII Congress of the European Academy of Allergology and Clinical Immunology, Barcelona, 2008.
77. Kuipers H., Lambrecht B.N. The interplay of dendritic cells, Th2 cells and regulatory T cells in asthma. Curr. Opin. Immunol., 2004; 16: 702-708.
78. Kumar R.K., Foster P.S. Modeling allergic asthma in mice: pitfalls and opportunities. Am. J. Respir. Cell Mol. Biol., 2002; 27: 267-272.
79. Kung T.T., Jones H., Adamas G.K. et al. Characterization of a murine model of allergic pulmonary inflammation. Int. Arch. Allergy Immun., 1994; 105(1): 8390.
80. Lärche M., Robinson D.S., Kay A.B. The role of T-lymphocytes in the pathogenesis of asthma. J. Allergy Clin. Immunol., 2003; 111: 450^463.
81. Leigh R., Ellis R., Wattie J.N. et al. Type 2 cytokines in the pathogenesis of sustained airway disfunction and airway remodeling in mice. Am. J. Respir. Crit. Care Med., 2004; 169: 860-867.
82. Leonardi-Bee J., Pritchard D., Britton J. and the Parasites in Asthma Collaboration. Asthma and current intestinal parasite infection. Systematic review and meta-analysis. Am. J. Respir. Crit. Care Med., 2006; 174(6): 514-523.
83. Lieberman D., Lieberman D., Printz S. et al. Atypical pathogen infection in adults with acute exacerbation of bronchial asthma. Am. J. Respir. Crit. Care Med., 2003; 167(11): 406-410.
84. London S.J. Gene-air pollution interactions in asthma. Proc. Am. Thorac. Soc., 2007; 4:217-220.
85. Mackay I.R., Rosen F.S. Asthma. N. Eng. J. Med., 2001; 344 (5): 350-362.
86. Mayr S.I., Zubery R.I., Liu F.-T. Role of immunoglobulin E and mast cells in murine models of asthma. Brazilian J. of Medical and Biological Research, 2003; 36: 821-827.
87. Mayuzumi H., Ohki Y., Tokuyama K. et al. Age-related difference in the persistency of allergic airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Int. Arch. Allergy Immunol., 2007; 143(4): 255262.
88. McKinley L., Kim J., Bolgos G.L. et al. Reproducibility of a novel model of murine asthma-like pulmonary inflammation. Clin. Exp. Immunol., 2004; 136: 224-231.
89. McKinley L., Kim J., Bolgos G.L. et al. Allergens induce enhanced broncho-constriction and leukotriene production in C5 deficient mice. Respir. Res., 2006; 7(1): 129.
90. Mizue Y., Ghani S., Leng L. et al. Role for macrophage migration inhibitory factor in asthma. PNAS, 2005; 102(40): 14410-14415.
91. Morgan W.J., Crain E.F., Gruchalla R.S. et al. Results of a home-based environmental intervention among urban children with asthma. N. Eng. J. Med., 2004; 351(11): 1068-1080.
92. Mutius E. Asthma and allergies in rural areas of Europe. Proc. Am. Thorac. Soc., 2007; 4:212-216.
93. Nacak M., Aynacioglu A.S., Filiz A. Association between the N-acetylation genetic polymorphism and bronchial asthma. Br. J. Clin. Pharmacol., 2002; 54: 671-674.
94. Nathanielsz P.W. Animal models that elucidate basic principles of the developmental origins of adult diseases. Neurosci. Biobehav. Rev., 1998; 23(2):345-358.
95. National Research Council. Biomedical Models and Resources: Current Needs and’Future Opportunities. Washington, D.C.: National Academy Press, 1998.
96. National Surveillance for Asthma — United States, 1980—2004. CDC MMWR, 2007: 56(SS08): 1-14; 18-54. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/ss5608al.htm.
97. Olman M.A. Epithelial cell modulation of airway fibrosis in asthma. Am. J. Respir. Cell Mol. Biol., 2003; 28: 125-128.
98. Ordonez C.L., Khashayar R., Wong H.H. et al. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities of mucin gene expression. Am. J. Respir. Crit. Care Med., 2001; 163: 517-523.
99. Ovary Z., Watanabe N. Antigen and antibody detection by in-vivo methods. A revaluation of passive cutaneus anaphylactic reactions. J. Immun. Methods, 1977; 14: 381-390.
100. Paraskakis E., Sourvinos G., Passam F. Microsatellite DNA instability and loss of heterozygosity in bronchial asthma. Eur. Respir. J., 2003; 22: 951-955.
101. Pastorino A.C., Kuschnir F.C., Arruda L.K. et al. Sensitisation to aeroaller-gens in Brazilian adolescents living at the periphery of large subtropical urban centres. Allergol. Immunopathol. (Madr.), 2008; 36(1): 9-16.
102. Pearson T.A., Teri A., Manolio T.A. How to interpret a genome-wide association study. JAMA, 2008; 299(11): 1335-1344.
103. Perzanowski M.S., Ronmark E., Platts-Mills T.A., Lundback B. Effect of cat and dog ownership on sensitization and development of asthma among pre-teenage children. Am. J. Respir. Crit. Care Med., 2002; 166: 696-702.
104. Platts-Mills T., Leung D.Y.M., Schatz M. The role of allergens in asthma. Am. Fam. Physician., 2007; 76: 675-80.
105. Platts-Mills T.A., Vervloet D., Thomas W.R. et al. Indoor allergens and asthma: report of the Third International Workshop. J. Allergy Clin. Immunol., 1997; 100(6 ptl): S2-24.
106. Porrello A., Cardelli P., Spugnini E.P. Pet models in cancer research: general principles. J. Exp. Clin. Cancer. Res., 2004, 23(2): 181-193.
107. Reid L.M. Needs for animal models of human diseases of the respiratory system. Am. J. Pathol., 1980; 101(suppl. 3): S89-101.
108. Reinhardt A.K., Bottoms S.E. Quantitative assessment of subepithelial collagen deposition in the airways of mice following ovalbumin sensitization and intratracheal challenge. Chest, 2003; 123: 428S.
109. Revised Global Burden of Disease (GBD) 2002 Estimates. WHO, 2004. Available from:https://www.who.int/healthinfo/bodgbd2002revised/en/print.html.
110. Richter A., Puddicombe S.M., Lordan J.L et al. The contribution of inter-leukin (IL)-4 and IL-13 to the epithelial-mesenchymal trophic unit in asthma. Am. J. Respir. Crit. Care Med., 2001. 25: 385-391.
111. Roche W.R. Inflammatory and structural changes in the small airways in bronchial asthma. Am. J. Respir. Crit. Care Med., 1998; 157: S191-S194.
112. Rosenstreich D.L., Eggleston P., Kattan M. et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among innercity children with asthma. N. Engl. J. Med., 1997; 336: 1356-1363.
113. Sakai K., Yokoyama A., Kohno N., Hiwada K. Effect of different sensitizing doses of antigen in a murine model of atopic asthma. Clin. Exp. Allergy, 1999; 118: 9-15.
114. Salvato G. Quantitative and morphological analysis of the vascular bed in bronchial biopsy specimens from asthmatic and non-asthmatic subjects. Thorax, 2001; 56: 902-906.
115. Sandford A., Pare P. The genetics of asthma. Am. J. Respir. Crit. Care Med., 2000; 161(Suppl. 3): 202-206.
116. Schuppli C.A., Fraser D., McDonald M. Expanding the three Rs to-meet new challenges in humane animal experimentation. Altern. Lab. Anim., 2004; 32(5): 525-532.
117. Selgrade M.K., Lemanske R.F., Gilmour M. et al. Induction of asthma and the environment: what we know and need to know. Environ. Health Perspect., 2006; 114: 615-619.
118. Seminario M.-C., Guo J., Bochner B. et al. Human eosinophils constitutively express NFATp andNFATc. J. All. Clin. Immunol., 2001; 107: 143-152.
119. Shapiro S.D. Animal Models of Asthma. Pro: Allergic Avoidance of Animal (Models.) Is Not an Option. Am. J. Respir. Crit. Care Med., 2006; 174: 1171— 1178.
120. Shinagawa K., Kojima M. Mouse Model of Airway Remodeling. Strain Differences. Am. J. Respir. Crit. Care Med., 2003; 168: 959-967.
121. Sigurs N., Bjarnason R., Sigurbergsson F., Kjellman B. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care Med., 2000; 161(5): 1501-1507.
122. Slauson D.O., Hahn F.F. Criteria for development of animal models of diseases of the respiratory system. Am. J. Pathol., 1980; 101(suppl. 3): S103-122.
123. Stankiewicz W., Dabrowski M.P., Chcialowski A., Plusa T. Cellular and cytokine immunoregulation in patients with chronic obstructive pulmonary disease and bronchial asthma. Mediators of Inflammation, 2002; (11): 307-312.
124. Sporik R., Holgate S.T., Platts-Mills T.A., Cogswell J.J. Exposure to house-dust mite allergen (Der p I) and the development of asthma in childhood. A prospective study. N. Engl. J. Med., 1990; 323: 501-507.
125. Sugita M., Kuribayashi K., Nakagomi T. et al. Allergic bronchial asthma: airway inflammation and hyperresponsiveness. Internal medicine, 2003; 42(8): 636-643.
126. Sur S., Lam J., Bouchard P. et al. Immunomodulatory effects of IL-12 on allergic lung inflammation depend on timing of doses. J. Immun., 1996; 157: 4173-4180.
127. Sur S., Wild J.S., Choundhary B.A. et al. Long term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides. J. Immun., 1999, 162: 6284-6293.
128. Swanson K.S., Mazur M.J., Washisht K. et al. Genomics and clinical medicine: rationale for creating and effectively evaluating animal models. Exp. Biol. Med., 2004, 229: 866-875.
129. Swirski F.K., Sajic D., Robbins C.S. et al. Chronic exposure to innocuous antigen in sensitized mice leads to suppressed airway eosinophilia that is reversed by GMC-SF. J. Immunol., 2002; 169: 3499-3506.
130. Synek M., Beasley R., Frew A.J. et al. Cellular infiltration of the airways in asthma of varying severity. Am. J. Respir. Crit. Care Med., 1996; 154: 224230.
131. Taube C., Dakhama A., Takeda K. et al. Allergen-specific early neutrophil infiltration after allergen challenge in a murine model. Chest, 2003; 123: 410S-411S.
132. Taube C., Wei X., Swasey C.H. Mast cells, FcRI, and IL-13 are required for development of airway hyperresponsiveness after aerosolized allergen exposure in the absence of adjuvant. J. of Immunology, 2004; 172: 6398-6406.
133. Taylor P.E., Jacobson K.W., House J.M., Glovsky M.M. Links between pollen, atopy and the asthma epidemic. Int. Arch. Allergy Immunol., 2007; 144(2): 162-70.
134. Torres R., Pocado C., Mora F. Use of the mouse to unravel allergic asthma: a review of the pathogenesis of allergic asthma in mouse models and its similarity to the condition in humans. Arch. Bronconeumol., 2005; 41(3): 141-152.
135. Van Scott M.R., Hooker J.L., Ehrmann D. et al. Dust mite-induced asthma in cynomolgus monkeys. J. Appl. Physiol., 2004; 96: 1433-1444.
136. Vierboom M.P.M., Jonker M., Bontrop R.E., Hart B. Modeling human arthritic diseases in nonhuman primates. Arthritis Res. Ther., 2005, 7: 145-154.
137. Wahl W., Chen W. Transforming growth factor-p-induced regulatory T cells referee inflammatory and autoimmune diseases. Arthritis Res. Ther., 2005; 7: 62-68.
138. Walker C., Kaegi M.K., Braun P., Blaser K. Activated T cells and eosino-philia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J. Allergy Clin. Immunol., 1991; 88: 935-942.
139. Wild J.S., Sigounas A., Sur N. et al. IFN-g-inducing factor (IL-18) increases allergic sensitization serum IgE, Th2 cytokines, and airway eosinophilia in a mouse model of allergic asthma. J. Immunol., 2000,164: 2701-2710.
140. Yamamoto K., Takanashi S., Hasegawa Y. et al. Eotaxin level in induced sputum is increased in patients with bronchial asthma and in smokers. Respiration, 2003; 70: 600-605.
141. Ying S., O’Connor B., Ratoff J., et al. Thymic stromal lymphopoietin (TSLP) expression is increased in asthmatic airways correlates with expression of Th2-attracting chemokines and disease severity. J. Immunol., 2005; 174: 8183-8190.
142. Ying S., Zhang G., Gu S., Zhao J. How much do we now about atopic asthma: where are we now? Cell. Molec. Immunology, 2006; 3(5): 321-332.
143. Zhang Y., Lamm W.J., Albert R.K. et al. Influence of the route of allergen administration and genetic background on the murine allergic pulmonary response. Am. J. Respir. Crit. Care Med., 1997; 155: 661-669.
144. Zhu Z., Enborning G., Zheng T. et al. Interleukin-13 induces surfactant function abnormality in the murine lung. Chest, 2003; 123; 375-376.
145. Zosky G.R., Sly P.D. Animal models of asthma. Clin. Exp. Allergy, 2007; 37(7): 973-988.
Источник